QOJ.ac

QOJ

#290: ucup-team6719

Accepted: : 214
Are we robots?

#293: ucup-team3790

Accepted: : 213

#294: nanika

Accepted: : 211

#294: RDFZchenyy

Accepted: : 211
悟已往之不谏,知来者之可追。实迷途其未远,觉今是而昨非。

#294: ucup-team3966

Accepted: : 211
$$\underline{洹}我\underline{达}美\underline{乐}$$

#294: Wu_Ren

Accepted: : 211

#298: ucup-team228

Accepted: : 210

#298: yoy68

Accepted: : 210

#298: yzhang

Accepted: : 210
如果结果不如你所愿,就在尘埃落定前奋力一搏

#301: gg_gong

Accepted: : 209
Who am I? Why am I here?

#301: ucup-team7398

Accepted: : 209

#303: Euphoria_

Accepted: : 207
Orz ian_HLX

#303: ljw12345

Accepted: : 207

#303: ucup-team123

Accepted: : 207

#306: Calculatelove

Accepted: : 206
Love all my perfect imperfections.

#306: feecle6418

Accepted: : 206
gyh ak ioi

#306: jqh333

Accepted: : 206

#306: nhuang685

Accepted: : 206

#310: KevinLikesCoding

Accepted: : 205
$$\pi(n)=dp_{n,\pi \left (n^\frac{1}{3} \right )}-\pi \left (n^\frac{1}{3} \right ) +1-\sum_{p\in \left(n^\frac{1}{3},n^\frac{1}{2} \right] }\pi \left (\frac{n}{p} \right )-\pi(p)+1$$

#310: ucup-team4478

Accepted: : 205

#310: UESTC_BYR

Accepted: : 205

#313: do_while_true

Accepted: : 204

#313: jimmyywang

Accepted: : 204

#313: ucup-team6879

Accepted: : 204

#313: yyyyxh

Accepted: : 204
What is OI (O_o)?

#317: Lzy_

Accepted: : 203

#317: ucup-team1565

Accepted: : 203

#319: new_dawn_2

Accepted: : 202

#319: ucup-team3634

Accepted: : 202

#321: 2021cyq

Accepted: : 201

#321: ahihi1234

Accepted: : 201

#321: Arkweedy

Accepted: : 201

#324: ucup-team1055

Accepted: : 200

#324: ucup-team1617

Accepted: : 200

#324: ucup-team3774

Accepted: : 200

#324: ucup-team7524

Accepted: : 200

#328: binminh01

Accepted: : 199

#328: ucup-team1126

Accepted: : 199

#328: ucup-team2401

Accepted: : 199

#331: frankly6

Accepted: : 198

#331: MarSer020

Accepted: : 198

#331: test_algth

Accepted: : 198

#334: ANIG

Accepted: : 197
..

#334: arnold518

Accepted: : 197

#334: ucup-team1002

Accepted: : 197

#334: ucup-team3188

Accepted: : 197

#334: ucup-team7502

Accepted: : 197

#339: Nova_NightWind0311

Accepted: : 196

#340: Lynia

Accepted: : 195

#340: qwq

Accepted: : 195
$\displaystyle \sum_{i=1}^n [i,i+1,\cdots, i+k] \pmod{10^9+7}$

#340: thomas0702

Accepted: : 195

#340: ucup-team029

Accepted: : 195

#344: Little_Penguin

Accepted: : 193

#344: ucup-team6072

Accepted: : 193

#346: ucup-team1191

Accepted: : 192

#347: pengpeng_fudan

Accepted: : 191

#347: ucup-team4740

Accepted: : 191

#347: ucup-team635

Accepted: : 191

#347: zfs732

Accepted: : 191

#351: ucup-team1001

Accepted: : 190
utopian

#351: ucup-team2262

Accepted: : 190

#351: Yarema

Accepted: : 190

#354: KafuuChinocpp

Accepted: : 189

#354: ucup-team7610

Accepted: : 189

#356: sdoi

Accepted: : 188
$$P_{a_i}(x) = [t^{a_i}]\frac{1}{1-xF(t)}$$

#357: C1942huangjiaxu

Accepted: : 187

#357: pystraf

Accepted: : 187
more haste, more waste

#357: ucup-team1766

Accepted: : 187

#360: caijianhong

Accepted: : 186

#360: ucup-team026

Accepted: : 186

#362: Lucid_Sorrow

Accepted: : 185

#362: travel

Accepted: : 185

#362: ucup-team073

Accepted: : 185

#362: ucup-team1332

Accepted: : 185

#366: jinqihao2023

Accepted: : 184

#366: myee

Accepted: : 184
与其诺诺以顺,不若谔谔以昌

#368: lmh_qwq

Accepted: : 183
嘟嘟嘟

#368: zlxFTH

Accepted: : 183

#370: infCraft

Accepted: : 182

#370: ucup-team006

Accepted: : 182

#370: ucup-team7255

Accepted: : 182

#373: Acoipp

Accepted: : 181

#373: ffffyc

Accepted: : 181

#373: lazy1105

Accepted: : 181
ぼっち・ざ・ろっく!

#373: mendicillin2

Accepted: : 181

#373: oxford01

Accepted: : 181

#373: ucup-team6748

Accepted: : 181

#379: LYT0122

Accepted: : 180

#379: Sktn0089

Accepted: : 180

#379: ucup-team4938

Accepted: : 180
乌龟风扇俱乐部

#379: ucup-team5101

Accepted: : 180

#383: ucup-team3583

Accepted: : 179

#383: ucup-team6590

Accepted: : 179

#385: BreakPlus

Accepted: : 178

#385: x_707471

Accepted: : 178

#387: Diaosi

Accepted: : 177

#387: icpc_zhzx034

Accepted: : 177

#387: nathan4690

Accepted: : 177

#387: piggy123

Accepted: : 177

#391: ucup-team2454

Accepted: : 176
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11